Programing Language Semantics

Lecture 5

February 6, 2004

Axiomatic Semantics

- $lacksquare \{A\}$ skip $\{A\}$
- $\blacksquare \{A[a/X]\}X := a\{A\}$
- $= \frac{\{A \wedge b\}c_1\{B\} \quad \{A \wedge \neg b\}c_2\{B\}}{\{A\} \texttt{if} \ b \ \texttt{then} \ c_1 \ \texttt{else} \ c_2\{B\}}$

$${A \wedge b}c{A}$$

 $\{A\} \mathbf{while} \; b \; \mathbf{do} \; c \{A \wedge \neg b\}$

$$A \Rightarrow A' \quad \{A'\}c\{B'\} \quad B' \Rightarrow B$$

Axiomatic Semantics — Defining Validity

What does $\{A\}c\{B\}$ mean?

Suppose we define $\sigma \models A$ ("A is true in state σ ") somehow.

Then " $\models \{A\}c\{B\}$ " can be defined as " $\forall (\sigma, \sigma') \in \mathcal{C}[\![c]\!]. (\sigma \models A) \Rightarrow (\sigma' \models B)$ ".

Note: " $F_1
otin F_2$ " (where F_1 could be empty) is a standard notation for "formula F_2 is true (valid) under assumptions described by formula F_1 "; and " $F_1
otin F_2$ " is a standard notation for "formula F_2 is derivable under assumptions described by formula F_1 ".

Expressions with Variables; Assertions

Arithmetical expressions with variables (**Aexpv**) — an extension of **Aexp** with variables (variables range over **Intvar**):

$$a ::= n \mid X \mid i \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2$$

Assertions (Assn) is an extension of the Bexp:

$$A ::=$$
true | false | $a_1 = a_2 \mid a_1 \le a_2$ | $A_1 \land A_2 \mid A_1 \lor A_2 \mid \neg A_1 \mid A_1 \Rightarrow A_2$ | $\forall i.A \mid \exists i.A$

Meaning of Aexpv and Assn

Given $\sigma \in \Sigma$ and an interpretation $I : \mathbf{Intvar} \to \mathbb{Z}$, we can define $\mathcal{A}v[\![\cdot]\!]I\sigma$:

$$\mathcal{A}v[n]I\sigma := n, \quad \mathcal{A}v[X]I\sigma := \sigma(X), \quad \mathcal{A}v[i]I\sigma := I(i), \dots$$

Now we can define $\sigma \vDash^I A$:

- lacksquare $\sigma \models^I \mathsf{true}$
- $\bullet \sigma \vDash^I a_1 \leq a_2$, if $\mathcal{A}v[a_1]I\sigma \leq \mathcal{A}v[a_2]I\sigma$
- \bullet $\sigma \models^I A \land B$, if $\sigma \models^I A$ and $\sigma \models^I B$
- \bullet $\sigma \models^I \forall i.A, \text{ if } \sigma \models^{I[n/i]} A \text{ for all } n \in \mathbb{Z}.$

Lemma: $\mathcal{A}[a]$ and $\mathcal{B}[b]$ agree with the above definitions.

Meaning of Hoare Rules

What is the meaning of $\{A\}c\{B\}$?

$$\models^{I} \{A\}c\{B\} \text{ if and only if}
\forall (\sigma, \sigma') \in \mathcal{C}[\![c]\!].(\sigma \models^{I} A) \Rightarrow (\sigma' \models^{I} B).
\models \{A\}c\{B\} \text{ if and only if } \forall I \in (\mathbf{Intvar} \to \mathbb{Z}). \models^{I} \{A\}c\{B\}.$$

Theorem (soundness): $\vdash \{A\}c\{B\} \implies \vdash \{A\}c\{B\}$

The opposite is also true if we state the consequence rule as

follows:
$$\frac{\models (A \Rightarrow A') \quad \{A'\}c\{B'\} \quad \models (B' \Rightarrow B)}{\{A\}c\{B\}}$$